A Time-Locked Message Capsule Platform Based
on Threshold Networks

Antoine Karam
Department of Computer Science
American University of Beirut
Beirut, Lebanon

Abstract—Timelock encryption allows a user to encrypt mes-
sages to a future specified unlock date. First, we explore previous
attempts of timelock encryption that rely on agents and puzzles
to achieve the desired functionality. Then, we present a time
capsule platform based on the timelock encryption scheme which
allows users to encrypt messages to a future specified date. The
scheme leverages a threshold network that produces private keys
at specified intervals. We use an identity based encryption scheme
with round numbers as identities in order to encrypt messages
to a future date. We discuss the implementation details of the
scheme and platform, the challenges faced, and the practices
followed in order to guarantee security. Finally, we explore
possible research directions that benefit from the proposed
primitive to build innovative applications such as secure online
voting, sealed bid auctions, and the possibility of transitioning
this scheme to use post quantum secure algorithms.

Index Terms—Time-lock encryption, BLS signatures, Identity-
based encryption, Distributed verifiable randomness

I. INTRODUCTION

Timelock encryption refers to encrypting a message or
plaintext to the future. This means that the encryptor of
the message would specify an unlock date after which the
ciphertext can be than automatically be decrypted. Before the
unlock date, no one and even the encryptor should not be
able to recover the plaintext before the specified date has
passed. This would be theoretically implemented by releasing
the key on the specified unlock date. Concretely, problems
arise when we try to implement such a scheme. We might ask
the following questions:

o Who should be responsible for releasing the key at the
unlock date?

o« How can we guarantee that the ciphertext will not be
decrypted before the unlock date?

« How can we enforce the concept of time on a traditional
encryption scheme?

Primary incentives drive the research towards the develop-
ment of both practical, reliable and secure timelock encryption
scheme. We note some of them:

o Secure Electronic Voting: Digital voting has been a
challenge for researchers and governments. Solving this
problem would allow a greater number of citizens to
participate in the voting procedure. However, solving this
problem must not trade-off nationwide security. It should

Ghady Youssef
Department of Computer Science
American University of Beirut
Beirut, Lebanon

be trivial as to why we wouldn’t want a corrupt or mali-
cious voting platform, which could compromise votes, rig
elections; which could ultimately directly affect the future
of a country and its citizens. Timelock encryption could
contribute to this field by enabling the secure transmission
of the electors’ votes and guarantee that those votes are
not released before the end of the voting process. We
can think of it similar to when the votes are stored in the
ballots and no one is allowed to check them before the
end of the elections process. More challenges remain but
are not addressed by this primitive.

o Sealed-bid auctions: Similar to secure online voting,
sealed-bid auctions could benefit from timelock encryp-
tion by storing the encrypted bids until a specified unlock
time which would ensure fairness across all bidders (by
ensuring that bids are submitted anonymously and that
nobody could decrypt them before the end of the auction).

o Transfer of assets: We could use timelock encryption
in order to freeze some assets to a future specified time,
preventing their release before some transactions or funds
have been transferred.

o Preservation of legal documents: Legal or government
documents can be encrypted to remain hidden from the
public until a specific date.

II. BACKGROUND

This section covers some mathematical and cryptographic
primitives that were used throughout this project.

A. Elliptic Curves

An elliptic curve is a curve on a plane with a pair of
(z,y) coordinates. A curve’s equation defines all the points
that belong to that curve. In cryptography, curves typically
follow the Weierstrass form:

vV =a34ar+0b ()

We typically use curves that range over discrete values
rather than continuous values, since we would use them to
generate keys. Elliptic curves are typically defined over finite
fields of prime order ¢. For example Z,, the set of integers
modulo ¢q. The security of such curves in the context of
cryptography relies on the order or number of points in the



4}

=3 -2 -1 0 1 2 3 4

Fig. 1. Adding two points on an elliptic curve. (Source: Serious Cryptography,
Applied Cryptography course slides)

field, the greater its security since it makes it harder to guess
the number (or key) that was used.

Operations on the curve are defined on the points that belong
to the curve. For example, we could add two points of the
curve, and the result would be a new point on the curve.
Consider two points P,(Q € E where E is the set of points
that satisfy the curve’s equation. P + () is a point that is also
in E, see Figure 1.

B. Bilinear Maps and Pairings

Pairing are maps that take a point P € G; and another
Q@ € G2 and return a point X € Gr. Bilinear maps have the
following structure, by defining the pairing e:

e: Gy x Gy = Gr )

These bilinear maps have the following special properties:
e e(P,Q+R)=e(P,Q) e(PR)
o e(P+5,Q)=e(P,Q)-e(5,Q)

and from those we have the following equalities that hold:

€(CLG1, bGQ) = E(Gl, ng)

=e(G1,Gs )
= e(Gl, aGg
= e(bGl, GGQ)

It is not necessary to dive deep into the proof of how these
work, but it is necessary to note, in order to understand the
constructs that will follow.

C. Hash to Curve

In order to compute the signature of a message or plaintext,
we must first transform this message to a point on the
elliptic curve we are using. We will not go into the details
of this transformation, but it is important to note that this

transformation is needed in order to use the message as a
point on the curve and compute the signature through curve
operations.

D. BLS signatures

BLS signatures typically use bilinear pairings in order to
sign and verify signatures. Private and public keys are defined
over the two groups G and G respectively (up to swap). We
can compute the private key s by randomly sampling a point
from G;. Consider G; € G; and G5 € Gy which are both
generators of their respective groups. The public key would
be obtained by multiplying the private key by the generator
G, € Gy where p = s - G;. Computing the signature of a
plaintext pt would first consist of mapping its value to a valid
point on the curve of the respective group (using a hash to
curve function) and then compute o = p - H(pt) which is a
standard elliptic curve operation.

In order to verify the signature, we should verify that
e(G1,0) = e(p, H(m)), we can validate this claim by the
properties of the bilinear pairings.

[
@
Q
-

2

E. Finite, Prime and Extension Fields

Fields are sets on which addition, subtraction, multiplication
and division are defined. Finite fields are fields that have a
finite number of elements. For example, the set of integers Z,
modulo ¢, where ¢ is a prime number F, = {0,1,...,q —
1}. Extensions of a field typically allow some operations not
possible in field F; possible in field F5 which extends the
latter. A trivial example would be the set of real numbers R and
complex numbers C. For example, 22 —1 = 0 has no solution
in R because z2 > 0 and this YV € R. The introduction
of the imaginary number i> = —1 allows us to solve the
aforementioned equation in C. A field extension F,2 of F,
would essentially mean that we will need two elements of
F, or we can refer to it as a quadratic extension of IF, [7].
It allows us to represent the field elements as polynomials,
where adding two elements consists of adding the coefficients
of the polynomials. Some operations like multiplication cannot
still hold (like in the example of complex numbers), so we
introduce some rules that are irreducible in the field we are
extending. This will allow us to perform twisting operations
by “implementing” large extension fields by a combination of
smaller extensions.

We apply this concept in the context of curves over finite
fields modulo ¢, Fj,.

F. BLS Curves

BLS12-381 is a standard elliptic curve that has the equation
y? = 3 + 4. It has some additional properties which make it
“pairing friendly” [7]. We will not dive into the exact reasons



for the choice of parameters and values for this curve as it is
beyond the scope of this project.

A twist allows us to transform the points of one curve
to another. This is typically done when the fields have high
degrees making the computation within the field very complex
and expensive. We can reduce operations on [F 12 to be
performed on F,.. The BLS12-381 curve’s second group
G2 can be reduced from Fji2 to Fg2 which will make the
computations much more efficient.

The two groups of the pairing will be [7]:

e Gy C E(F,) where E : y> =23 +4

o Gy C E'(Fjpi2) where E : y? = 2% + 4(1 +14)

Where (1 +4) is the term that was added in order to make
the extension in [Fj12 work properly.

The BLS12-381 has two curves which makes implementa-
tion much simpler, instead of sending coordinates of size 48
bytes, we could send only the x coordinate and then we would
know which curve to use based on the remaining 3 bits which
acts as flags. One bit represent whether it uses the first or
second curve, the second represents the point at infinity and the
last would represent whether the point is compressed or not.
Note that we have 3 bits of flags and 381 bits of coordinates
(hence the 381 in the name), for a total of 48 bytes.

G. Distributed Key Generation

Distributed key generation is a secret sharing mechanism in
which P parties contribute to generate a key K. Each party
computes P; their share of the secret. With any £ parties we
can recover K. It is important to note that it is not required
for the P parties to be present, only k is enough to recover
the key.

H. Identity-Based Encryption

Traditional symmetric and asymmetric encryption primitives
would require some sort of key in order to encrypt messages.
Symmetric keys would use the same key to both encrypt
and decrypt messages. Asymmetric primitives would involve
a private key which could be used to decrypt and a public
key to encrypt (or the inverse if this is a signature scheme).
These keys are ideally indistinguishable from random by an
adversary. However, managing these keys could be a tedious
task and could make the design of some systems cumbersome.
Identity-based encryption (IBE) consists of using well known
values that represent a person or organization through their
identity. Some trivial values that could represent identities in
a system would be: ID, email, unique username or phone
number. The chosen identity does not affect the functionality
of the scheme. We would say that you would “encrypt to
an identity” meaning that for example, Alice could encrypt
something to Bob just by knowing Bob’s email address. Then,
Bob with his private key could decrypt Alice’s message.

L. The League of Entropy

The League of Entropy (LoE) [5] is a publicly verifiable de-
centralized Randomness-as-a-Service which provides its users
with fresh randomness at periodic intervals. The network is

hosted by over 19 active nodes with 100% up-time since
2020 deployed over five continents by various educational
institutions and companies. This distributed nature of the
network allows for decentralized trust where its users can
confidently depend on its services without worrying that it
is fully controlled by some malicious actor, while verfiying
its correctness through BLS signatures. The LoE has a current
threshold as of the time of writing support up to 11 compro-
mised nodes without affecting its services. For example, this
means that even if one node is compromised, this does not
affect the availability, reliability or break trust with its users.

III. RELATED WORK

There are previous attempts at implementing timelock en-
cryption and we distinguish two main approaches to tackling
this problem:

A. Agent-based Timelock Encryption

As previously mentioned, to achieve the desired function-
ality of timelock encryption, we would need a manual or
automatic way of releasing the private keys of a designated
ciphertext exactly at the unlock time specified by the user.
In the case of agent-based timelock encryption, this is solved
trivially by offloading this task to a trusted third-party or agent
which will release the private keys at the specified time. One
could naively implement this by sharing the private keys to
a message to their friend whom they trust. This poses some
critical downsides. (1) we have to trust that our friend does not
use the private key to peek at the message by decrypting the
ciphertext, (2) we have to hope that our friend truely releases
the keys are the designated date (not before and not at a later
date) and (3) that they actually release the key.

B. Puzzle-based Timelock Encryption

Another approach is inspired by proof-of-work systems
in the sense that we use a puzzle or task in order to en-
force the notion of time by requiring decryptors to perform
some computations which require effort and time in order to
access the plaintext. Puzzle-based timelock encryption uses
this concept in order to “guarantee” (to some extent) that
accessing the plaintext would not be possible before a certain
amount of time due to the computational cost of solving the
puzzle. This is similar to the proof-of-work systems imposed
in blockchain systems and cryptocurrencies where a user has
to compute thousands of hashes in order find the secret value
and write the block. In our case, we would use it to enforce a
minimum amount of time that the user has to spend in order
to access the plaintext. However, this approach has several
issues. (1) There are no guarantees that the puzzle would
be as hard as it is today in the future. This is due to the
continuous hardware and software advancements which could
make some puzzles either weak or easier to solve and thus,
losing any guarantees on the unlock date. (2) Enforcing time
using computationally hard problems implies that a lot of
energy, money and other computational resources would be
wasted in order to implement such functionality. This is not



an efficient nor reliable option that would stay relevant in the
future and thus, making it obsolete for such an application
where we need to “encrypt to the future”.

C. Agent-based Timelock Encryption

Most recently, a variation of agent-based timelock encryp-
tion has been proposed [8] which keeps the simplicity of
“trusting someone to release the keys in the future” but
addresses its known issues. They used the fact that drand
[2] is a network which maps round numbers to verifiable
randomness which are released at specific periodic intervals of
time. We can they trust this network to release the randomness
exactly when the network reaches a designated round number.
If we consider the round number as the public key and the
signature or randmoness as the private key, we can build
a system where we can “encrypt to a round number” and
then only be able to decrypt the ciphertext when that round
number is actually reached and the randomness is released
by the network. Recall that we can easily precompute round
numbers ahead of time because the network increments the
round number for each period, and that each round number
corresponds to a specific timestamp (according to genesis
time which indicates the mapping of round number 1 and its
relevant timestamp). Technically, this approach uses identity-
based encryption with round numbers as “identities” with
private keys being the randomness released at each round.
This approach addresses the issue of trust since drand is a
decentralized network and is not controlled by a single party,
neither drand or the encryptor or anyone else is able release
the private keys before the designated time (up to a certain
threshold of compromised node).

IV. SYSTEM DESIGN & ARCHITECTURE

Our timelock library does not encrypt the data itself. It is
used to encrypt the symmetric key handled by another library,
which in our case is the age [3] framework. This scheme
is known as hybrid encryption, which allows us to encrypt
arbitrarily sized data while only time-locking a symmetric key.

Ciphertexts are encrypted to both a round number p and the
public key pk, such that decryption requires the round private
key. The round private key is derived from the master secret
key and the round number. This is identity-based encryption
where we encrypt and decrypt to an identity, which in our case
is the round number.

We define two generators for the elliptic-curve groups G
and G2, and we make use of the bilinear target group G,
along with four cryptographically secure hash functions:

o« Hi: {0,1}* — Ga

o H5: GT — {0,1}€

o H3:{0,1}* x{0,1}} —» 77

e Hy:{0,1}* — {0,1}*

We use separate hash functions H;, H,, Hs, and Hy to
explicitly indicate that each one serves a different purpose,
even though they all use the same underlying SHA-256
primitive.

For our encryption scheme, we chose to work with an
unchained beacon, which means each round is independent
of the other. Therefore, the round private key 7 is defined in
(G1, while the master public key P is defined in Ga. As a
tradeoff, the signature size is smaller, but the public key is
larger because G is defined over an extension field of degree
2 compared to GG1. In other words, the coordinates in GG are
twice the size of those in G.

A. Encryption

Algorithm 1 Encryption algorithm. Source: The original time-
lock paper [8].
procedure ENC(pp, p, M)
Parse pp — (bg, P7 H= (}117 HQ, I’Ig7 H4))
PK, < e(P,Hi(p)) > round public key

o+ {0,1}* > nonce
< Hg(O', M)
U+ rG;y > ephemeral public key

V < 0@ Hy((PK,)") > hiding commitment to nonce
W« M @ Hy(o) > one-time-pad
return (ct = (U, V,W), 7 =r)

end procedure

In our architecture, the encryption of a message Me{0, 1}
for round number p is performed as follows:
o Compute the round public key using identity-based en-
cryption.
o Generate a nonce o.
« Hash the nonce together with the message to derive the
secret exponent r.
o Compute the ephemeral public key U = rGos.
« Hide the nonce o in V.
o Encrypt the message M using a one-time pad with the

key derived from o.

We now explain why this works in detail.

a) Round public key: In identity-based encryption, the
idea is to take a point in (G; and a point in G5 and compute a
bilinear pairing to obtain a point in Gr. The master public key
P is already in G». To convert the round number p into a point
in G, we use a hash-to-curve function, yielding H; (p) € G;.
We can then compute the pairing e(P, H1(p)) which forms
the round public key. This relation will be reversed during
decryption to recover secrets.

b) Nonce generation: A secure random number genera-
tor is used to produce a nonce o.

c) Secret exponent derivation: We derive a value r from
the nonce o and the message M. The value r serves as a secret
exponent in this encryption.

d) Ephemeral public key: We compute U = r(G5, which
serves two purposes. It is used to reconstruct o during decryp-
tion and to verify that the ciphertext has not been tampered
with.

e) Hiding the nonce: We calculate V. = o &
Hy((PK,)"). This hides the nonce o, which can only be
recovered once the round private key is known.



f) Message encryption: Finally, we encrypt the message
M using a one-time pad with the key derived from the nonce
o, which is itself hidden in V.

B. Decryption

Algorithm 2 Decryption algorithm. Source: The original
timelock paper [8].
procedure DEC(pp, p, ), ct,)
Parse ct, — (U, V,W)
o'+ V & Hy(e(U,m,))
M’ < W @ Hy(o)
T4 .FIg(U/7 M/)
if U = rG; then
return M’
else
return L
end if
end procedure

Given a ciphertext ct, and the round key m,, decryption
happens as follows:
« Recompute o’
o Recover the message M’
e Recompute r from ¢’ and M’.
o Verify that U’ = rG4 equals U to ensure the ciphertext
has not been tampered with.

a) Recovering o': First, we recompute ¢/ = V &
Hj(e(U,mp)). This formula holds because during encryption
we hid o through V = 0 & H2((PK),)"). We already have V,
so we only need to prove that Hy((PK,)") = Ha(e(U, mp)):

o=V & Hy((e(U,mp))
=0 ® Hy((PK,)") ® Ha(e(U, 7))
o ® Ha(e(P, Hy(p))") ® Ha(e(U, m,))
o @® Hy(e(P, Hi(p))") ® Ha(e(rGa, sHi(p)))
(
(

o @ Hy(e(sGo, Hi(p))") ® Ha(e(rGa, sHi(p)))
o ® Hy(e(G2, Hi(p))"™®) ® Ha(e(G2, Hi(p))"™)

where U = rGs, P = sG4 is the master public key in Gs
with secret s, and 7, = sHy(p) is the round private key.

b) Message recovery and verification: Once ¢’ is recov-
ered, the message is decrypted as M’ = W @ Hy(c'). We
recompute r = Hs(o’, M) and verify that U’ = rG2 equals
U. This final check ensures that both ¢’ and M’ have not been
modified, providing CCA security.

—~ o~ —~

V. IMPLEMENTATION

The encryption happens client-side to prevent sending the
message in plaintext to the server and having the server
perform the encryption.

For our encryption algorithm, we use the noble [4] library
for hashing, elliptic curve operations, and secure random
number generation. To handle the secret exponent correctly,

we implemented a function which iteratively hashes the nonce
and message until a valid scalar is produced. This guarantees
that the secret exponent r is always suitable for elliptic
curve operations. For the output in G, we serialize the -
elements by recursively breaking them down into 6, IF )2, and
IF, components to ensure a consistent representation, allowing
it to be used across implementations or libraries. We also use
utility functions to convert big integers into consistent byte
representations.

Our encryption scheme is hybrid, meaning that file encryp-
tion is delegated to the age—encryption [3] library. Our
responsibility is to encrypt the symmetric file key used by age
with our timelock encryption. To achieve this, we implemented
the portion of age responsible for wrapping the file key in a
Stanza, allowing us to intercept the key, encrypt it with our
timelock scheme, and store it as encrypted metadata alongside
the file.

The backend service is written in Rust. The API layer is
built using Axum, a lightweight and simple framework that
allows us to quickly define routes and handle requests.

We maintain repository wrappers around both S3 and
SQLite. Generic data, such as capsule ID, round number,
filename, status, and subscription information is stored in
SQLite. Encrypted and decrypted file contents are stored in
S3, which is highly efficient for file storage. We keep both
the relational database and S3 synchronized by updating the
capsule state depending on the operation performed.

We also implement a dedicated drand client responsible for
communicating with the League of Entropy’s drand beacon
APIL. This component fetches round numbers and beacon
values, verifies signatures, and maintains an internal cache for
performance.

We implement the decrypt job, which runs every second. Its
main responsibility is to fetch capsules ready for processing,
decrypt them, update states, save the decrypted files, and notify
subscribers of the capsule.

The decryption algorithm closely mirrors the encryption
process. We use the ark [1] library for elliptic curve op-
erations and the sha?2 [6] library for hashing. To handle the
secret exponent correctly, we implemented the same function
used on the client side. For the output in G, we use the
serialize compressed function provided by the ark library
which removes the need for manual serialization like on the
client side.

During decryption, we rely on the age library to recover
the file, but the file key itself is encrypted using our timelock
scheme. Therefore, we implemented the portion of age re-
sponsible for unwrapping the Stanza so that we can intercept
the encrypted file key, decrypt it, and supply it back to age
for file decryption.

Our timelock-age wrapper takes an input ciphertext, invokes
the age decryptor with our custom implementation, and
returns the decrypted output, split into the original filename
and its corresponding content.

For error handling, we ensured that our service never panics.
We implemented custom exceptions, wrapping every third-



party exception with our own. All exceptions are propagated
to the last layer of the service, where our exception handler
intercepts them and, based on the exception type, returns the
appropriate response code and message to the user.

VI. THREAT MODEL & SECURITY

We provide end-to-end encryption to ensure that files remain
confidential. At no point does the server have access to the
plaintext data since all encryption occurs client-side. This
guarantees that even a compromised server cannot bypass the
encryption.

A. Security Assumptions

Our system assumes the following security properties:

o Cryptographic primitives: The underlying -elliptic
curve, pairing operations, and hash functions used are
secure. All primitives used in the codebase are imported
from battle-tested libraries. So we rely on both the
security of the implementation and the design of those
primitives.

o Threshold beacon security: We rely on the League
of Entropy’s drand network for public randomness. The
drand network is a threshold BLS system, meaning no
single node can independently release round keys. A
threshold of nodes must collaborate in order to take
control over the release of keys and signatures, if the
number of nodes compromised is below the threshold,
we can still benefit from a security guarantee. Note that
with the current deployment of the network, the feasibility
of such an attack is highly impractical, especially if we
recall that the nodes are not controlled by a single entity.
All signatures fetched from the network are verified on
the server to ensure that they are valid points on the
elliptic curve.

B. Potential Threats

The primary threats considered are:

« Compromised server: Since encryption occurs client-
side and file keys are protected with timelock encryption,
a compromised server cannot access plaintext data di-
rectly. Also, any corrupted ciphertext is detected through
consistency checks in our decryption scheme. This pre-
vents decryption of incorrect data but it does not provide
a full integrity guarantee. Since ciphertexts are not signed,
a compromised server could still delete or produce valid
ciphertexts without detection.

o Compromised drand network: If an attacker manages
to compromise the threshold of the network and manages
to take control, they could potentially take control over
and release malicious signatures, meaning that they can
decrypt messages submitted to the platform.

VII. CONCLUSION

This paper presented a time capsule platform that allows
users to encrypt messages to the future, in a reliable, practical
and secure way. We leveraged the drand threshold network

which allows us to generate private keys in a future timestamp,
which are mapped to a round number. The round numbers
act as identities in the identity-based encryption scheme used.
We described the design of the system, the implementation
choices, and the challenges faced while ensuring security and
correctness. This line of work is promising especially for
more innovative applications such as secure online voting and
sealed-bid auctions.

VIII. FUTURE WORK
A. Post-Quantum Migration

Our current implementation relies on elliptic curves and is
therefore not post-quantum secure. Both the threshold network
and the BLS-based IBE scheme should be replaced with post-
quantum alternatives. Research in this direction could help
ensure that this idea remains relevant in a post-quantum world.

B. Commitment Schemes

Integrating commitment schemes into our timelock encryp-
tion system could provide additional functionality, enabling
users to commit to values securely and reveal them later. This
could serve as a foundation for more advanced cryptographic
protocols.

C. Secure Electronic Voting

Our existing timelock encryption primitive could be used
as a building block for a proof-of-concept cryptographically
secure electronic voting platform. Electronic voting has been
a topic of research for decades, but practical implementation
at the national level is challenging due to security issues
such as vote forgery, DDoS attacks, and other manipulations.
Building a secure voting platform using timelock encryption
and commitment schemes could be a step toward a future
where citizens can vote online safely, without the risk of
interference.

REFERENCES

[1] arkworks. https:/github.com/arkworks-rs. [Accessed 18-11-2025].

[2] Drand. https://www.drand.love. [Accessed 18-11-2025].

[3] GitHub - FiloSottile/typage: A TypeScript implementation of the age
file encryption format, available as an npm package or as a bundled .js
file., howpublished = https://github.com/filosottile/typage, year = , note =
[Accessed 18-11-2025],.

[4] GitHub - paulmillr/noble-curves: Audited & minimal JS implementation
of elliptic curve cryptography. https://github.com/paulmillr/noble-curves.
[Accessed 18-11-2025].

[5] League of Entropy. https://www.drand.love/loe. [Accessed 18-11-2025].

[6] sha2 - Rust. https://docs.rs/sha2/latest/sha2/. [Accessed 18-11-2025].

[7] Ben Edington. BLS12-381 For The Rest Of Us - HackMD.
https://hackmd.io/ @benjaminion/bls12-38 1 About-curve-BLS12-381,
2025. [Accessed 18-11-2025].

[8] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. tlock: Practical
timelock encryption from threshold BLS. Cryptology ePrint Archive,
Paper 2023/189, 2023.



