Functional Programming
Project Report

A Functional HTML Paser

USJ m@ finci

Faculté d'ingénierie et d'architecture
Institut national des télécommunications et de l'informatique

December 12, 2024
Submitted by

Ghady Youssef
ghady.youssef@net.usj.edu.1b

Antoine Karam
antoine.karam3@net.usj.edu.1lb

Joseph Samara
joseph.samara@net.usj.edu.1lb

1 Introduction

In this report, we present a functional HTML parser written in Haskell. This tool
provides core features such as HTML parsing, DOM tree manipulation, and can
output other documents, such as markdown.

2 Parser Combinators

Libraries such as parsec provide APIs for working with monadic parser combinators.
This allows us to write grammars in a declarative way. Our HTML parser is written
using parser combinators, and we provide our own implementation based on [2, 1].

Using parser combinators, we can construct complex parsers from simpler ones.
Combinators such as choice, many, char, and string allow us to compose complex
patterns based on our needs. We heavily rely on monads to chain multiple parsers,
which enables us to write cleaner code and improve error handling.

Each parser sequentially consumes input from the input stream, and at each
stage, it could potentially fail and return an error instead of the consumed input.
This makes it easy to chain multiple parsers in a do block or use <|> to express an
alternative path in the grammar.

3 Grammar

A simple LL(1) grammar suffices for our simple parser. This grammar encodes a
subset of the HTML language.

html — tagOpen children tagClose | €
children — text | html

4 DOM-like API

We also provide a set of functions that allow the user to manipulate the DOMTree
such as findById or findByClass and addElement.

5 Markdown Compilation

Our library allows the user to parse HTML documents and translate them into
corresponding markdown files. Any irrelevant HTML tag that does not have an
equivalent in markdown is stripped out.

6 Diff Computations

We implemented the diff function which computes the differences between two
HTML documents. The algorithm implemented in this function is inspired by the
React Virtual DOM reconciliation [3]. First, we check if the two elements of the

tree are different. If so, we replace the entire DOM subtree. If both elements are
of the same type, we check the attributes and compute the differences in both the
attributes and the children of the node. The signature for this function is as follows:

diff :: DOMTree -> DOMTree -> [Patch]

7 Future Work

7.1 Enhanced Error Handling

Since our parser is based on the implementation of monadic parser combinators,
we can benefit from the Monad and Alternative type classes to gracefully handle
errors and display meaningful messages.

7.2 Enhanced Parsing for More HTML Tags

We can extend support to include more HTML tags, such as , , <i>,
and self-closing tags.

Currently, our implementation does not handle cases where a TextNode and
other HTMLElements are siblings. For example:

<p>Hello World</p>

This fails because our implementation supports either TextNode or HTMLElement
as the contents of an existing DOMTree, but not both simultaneously.

7.3 Support for More Markdown Generation

We can add support for advanced HTML tags and implement proper handling of
nested lists with indentation for both <o01> and , as well as support for tables.

We can adjust the formatting slightly and consider using parser combinators to
build our Markdown generator. Currently, our parser combinator takes input as a
String; we can extend it to accept input as a DOMTree as well.

References

[1] Heitor Toledo Lassarote de Paula. Parser Combinators in Haskell. Online, 2021.

[2] Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Combinators
For The Real World. 12 2001.

[3] The React Team. Reconciliation. Online.

	Introduction
	Parser Combinators
	Grammar
	DOM-like API
	Markdown Compilation
	Diff Computations
	Future Work
	Enhanced Error Handling
	Enhanced Parsing for More HTML Tags
	Support for More Markdown Generation

