
Firmware Design
Project Report

Elevator Controller

January 9, 2025
Submitted by

Ghady Youssef
ghady.youssef@net.usj.edu.lb

Antoine Karam
antoine.karam3@net.usj.edu.lb

Contents

1 Introduction 1

2 Firmware Architecture 2

3 Drivers 3
3.1 Temperature: LM35 . 3
3.2 Real-Time Clock: DS1307 . 3

4 Display 4
4.1 Floor Display . 4
4.2 Cabin Display . 4

5 Motor 5
5.1 Motor Operations . 5
5.2 Safety Considerations . 5

6 Scheduler 6
6.1 Responsibility . 6
6.2 Elementary algorithm . 6
6.3 Reordering the queues . 6

7 Development Workflow 8
7.1 Version Control . 8
7.2 Continuous Integration (CI) . 8

8 Challenges 9

9 Future Work 10
9.1 Error Detection . 10

i

Abstract

This report presents the design and development of an elevator control system utiliz-
ing microcontrollers to manage various hardware components, including temperature
sensors, real-time clocks, and motor controllers. The system’s primary objectives
are to optimize elevator operation through efficient scheduling, ensure safety dur-
ing motor operations, and manage floor and cabin displays. The project addresses
challenges such as minimizing passenger waiting times, preventing unsafe motor
behavior, and ensuring reliable system performance. The integration of hardware
and software components creates a robust elevator control system with potential
applications in other safety-critical embedded systems.

Chapter 1

Introduction

This report outlines the design and development of an elevator control system using
microcontrollers to manage hardware components like temperature sensors, real-
time clocks, and motor controllers. The system aims to optimize elevator operations
by implementing an efficient scheduling algorithm, ensuring safety during motor
operations, and managing floor and cabin displays.

The project addresses many challenges, including minimizing passenger waiting
times and preventing unsafe motor behavior. It integrates hardware components
with software interfaces and real-time scheduling algorithms, creating a reliable and
efficient system for elevator operation.

1

Chapter 2

Firmware Architecture

motorelevator

floor

adcds1307

tempr

cabin_display

buttons date

Figure 2.1: Block diagram representing the firmware architecture

2

Chapter 3

Drivers

3.1 Temperature: LM35

The LM35 is a temperature sensor used to display the temperature inside the cabin.
Its implementation is straightforward, as it has already been implemented in another
project. The LM35 is connected to the system’s analog-to-digital converter (ADC),
utilizing the ADC driver.

The temperature API provides two main functions: one to directly get the tem-
perature and another to get it in BCD format, allowing easy display on the cabin’s
7-segment displays, limited to 2 digits.

3.2 Real-Time Clock: DS1307

In order to display the date and time inside the cabin, we used the DS1307 Real-
Time Clock. We referred to the datasheet to implement the required driver code,
exposing a read reg function to read from the internal chip registers. The date

API contains utility functions which allows us to retrieve the date, month, year and
time data. The driver code was implemented using I2C, in order to transfer the
regitser data from the chip to the microcontroller.

3

Chapter 4

Display

4.1 Floor Display

The floor displays on each floor and inside the cabin show the current status of the
cabin’s floor. The floor API monitors through the floor state monitor task the
swtiches present on each floor and updates the current floor global state. The
current state can be accessed through the get current floor function.

4.2 Cabin Display

The cabin display shows the time (HH:MM), date (DD MM), and current temper-
ature (TT °C) in sequence, cycling every 10 seconds. It utilizes four 7-segment
displays, paired with a separator display in the middle.

The temperature is retrieved in BCD format using the temperature API, while
the time and date are fetched from the data API, also in BCD format, facilitating
the display on the 7 segments.

The cabin display operates as a low-priority task running every 1 second. This
frequency ensures the display separator blinks in a heartbeat-like manner when
showing the time and allows timely updates from the APIs in case of any changes.

4

Chapter 5

Motor

The motor is a crucial component of the elevator system, responsible for moving the
cabin between floors.

5.1 Motor Operations

The motor API provides two main functions. One function is used by the elevator
scheduler, which is discussed in the next section, and another to determine the
motor’s current direction. The motor direction is important for both the scheduler
and the floor display, as it helps the scheduler choose the next floor and it ensures
the correct arrow is shown for the cabin’s movement.

The motor determines its movement based on the current floor provided by the
floor api and the target floor provided by the scheduler. It listens to the switches
to manage speed: it accelerates when leaving the start floor, decelerates as it ap-
proaches the destination, and stops once it reaches the target.

5.2 Safety Considerations

The motor is designed with passenger safety in mind, ensuring that it does not
blindly follow scheduler commands that could lead to unsafe behavior.

A key safety feature prevents the motor from suddenly changing direction. If the
motor is already moving in one direction and the scheduler requests a change to the
opposite direction, the motor will ignore the new request until it reaches its current
destination and becomes idle. This ensures that the motor does not perform abrupt
or unsafe directional changes, maintaining a safe ride.

In cases where the scheduler reschedules the motor to a new floor in the same
direction, the motor will accept new the scheduler request. This design ensures a
balance between responsiveness and safety.

5

Chapter 6

Scheduler

6.1 Responsibility

The scheduler’s primary responsibility is to determine the next floor the elevator
should move to based on the current position, the direction of the motor, and the
floor and cabin requests. It ensures that the elevator operates efficiently by selecting
the most optimal floor to serve, maximizing resource utilization given that there is
only one elevator in the system.

Additionally, the scheduler is responsible for ensuring safe operation by avoiding
abrupt direction changes. It prevents selecting a new floor that requires a sud-
den shift in direction, ensuring predictable elevator movement for the safety of the
passengers.

The elevator scheduler processes incoming requests from the cabin and from each
floor. It selects the next target floor for the elevator, taking into account priorites,
and staying in the same direction, while minimizing long trips if possible.

To manage these requests, the scheduler stores two queues: one for requests to
go up and another for requests to go down.

6.2 Elementary algorithm

1. When the elevator is completely idle, it is free to go in any direction.

2. When the elevator is going in a direction, it must preserve this direction until
the respective queues becomes empty.

6.3 Reordering the queues

When we reach the destination (the top of the queue) and dequeue it, we have to
reorder both queues to ensure the invariant of the queue t’s first and second are
preserved. That is, the first part contains the floors which are (resp. below, above)
the current floor for the (resp. down, up) queues and the second part contains the
floors which are (resp. above, below) the cabin floor for the (resp. down, up) queue.

6

Dequeue from queues

Select new target
floor

 [UP or DOWN]

 [idle]

Select target in the
same direction Stay idle

 [previous UP or DOWN]

 [previous idle]

 [arrived to destination]

 [not arrived to destination]

 [queues are empty]

Select any new
target

 [queues are not empty]

Figure 6.1: Activity diagram showcasing the elevator scheduling algorithm

7

Chapter 7

Development Workflow

7.1 Version Control

To complete this project, we made great use of developer tools like Git. It allowed
us to easily collaborate and distribute the tasks between the team members. We
also heavily relied on GitHub Issues to assign tasks to each of the team members.
When each issue is completed a pull request is created by the assignee and reviewed
by the other member to ensure that both members are aware of the changes made to
the codebase. This was a great opportunity to practice modern software engineering
methodologies.

We seperated our work into feature (or fix) branches which were constantly
created from the dev branch. Once each feature is completed, it is then merged
back into main. We primarily use dev for our workflow while main acts as a mirror
of dev to push new releases.

7.2 Continuous Integration (CI)

To ensure the codebase remains clean and free of unnecessary style issues, we used
clang-format with a specific configuration to keep the styling consistent. Addi-
tionally, we used cppcheck to check for any additional linting warnings or errors
that we could have missed during development.

Furthermore, we developed CI pipelines using GitHub Actions in order to au-
tomate building releases, style checks, and generate documentation using doxygen.
Since most off the codebase already contains comments in the doxygen format, it
made complete sense to have a pipeline dedicated for generating documentation. The
live documentation is a available at https://ghaadyy.github.io/elevator-controller/.

8

https://ghaadyy.github.io/elevator-controller/

Chapter 8

Challenges

One of the core challenges faced during the development of this project was to effec-
tively design the elevator’s scheduling algorithm. We wanted to create an efficient
algorithm that maximizes the number of trips in the same direction.

We had to thouroughly test and debug in order to make sure the algorithm works
correctly. When we were in doubt during the development, we made great use of
the debugger to step through the code. Most of the time, the errors were logical and
not related to the compilation of the code itself. Moreover, we decided to work on
the elevator scheduler in a pair-programming fashion. Since this was a difficult task,
reasoning throughout this problem together allowed us to progress much faster.

Every time we solve a bug, another one arises, and we have to carefully analyze
and document every possible interaction the scheduler might encounter. This helps
us process all edge cases and ensure a reliable scheduler. Throughout this process,
we’ve had to revise the elevator design multiple times. Initially, we stored all requests
in a single queue, but we then switched to using separate queues for external and
internal requests. Later, we merged the cabin and floor requests into two queues, one
for requests to go up and another for requests to go down. Eventually, we divided
these queues into two parts to further optimize the process.

9

Chapter 9

Future Work

9.1 Error Detection

Currently, there is no mechanism in place to anticipate what might happen if the
power suddenly fails or if the motor stops unexpectedly. We need to implement
error detection and handling procedures to address these potential failures, ensuring
a safe ride for passengers under all circumstances.

10

	Introduction
	Firmware Architecture
	Drivers
	Temperature: LM35
	Real-Time Clock: DS1307

	Display
	Floor Display
	Cabin Display

	Motor
	Motor Operations
	Safety Considerations

	Scheduler
	Responsibility
	Elementary algorithm
	Reordering the queues

	Development Workflow
	Version Control
	Continuous Integration (CI)

	Challenges
	Future Work
	Error Detection

