Saint Joseph University of Beirut

Department of Computer Science

USJNI'® finci

Faculté d'ingénierie et d'architecture
Institut national des télécommunications et de I'informatique

Bachelor Research Project

Report

Automated Web Testing Framework Using a
Restricted Natural Language

Submitted by

Antoine Karam Ghady Youssef
antoine.karam3@net.usj.edu.lb ghady.youssef@net.usj.edu.1lb

Submission Date: January 13, 2025
Supervisor: Mr. Maroun Ayli

Abstract

Automated testing is essential for maintaining software quality and robustness in modern
web development, where applications are increasingly dynamic and complex. However,
traditional script-based testing tools like Selenium pose significant challenges for non-
technical users due to their reliance on fragile web element locators such as XPATH
and CSS selectors. These locators are prone to failure when application structures
change, requiring frequent updates and substantial technical expertise. To address these
challenges, this paper introduces a Domain-Specific Language (DSL) designed to simplify
web testing by enabling non-technical users to define tests using natural, declarative
syntax. The system leverages Large Vision-Language Models (LVLMs) to dynamically
locate web elements based on user descriptions, enhancing the resilience of test scripts
and reducing the need for manual intervention. By abstracting over traditional web
testing technologies and integrating modern Al techniques, this approach aims to make
automated testing more accessible and robust, supporting both technical and non-technical
stakeholders.

Keywords: Software Engineering, Web Development, Theory of Compilers, Large Vision-
Language Models, Automated Testing

Contents

1 Introduction

1.1 Background
1.2 Importance
1.3 Problem
1.4 Solution

2 Literature Review

2.1 Script-Based Testing
2.2 Curiosity-Driven Web Testing
2.3 Automated Testing Frameworks
2.4 Structured Web Testing oo
3 Methodology
3.1 System Architecture
3.2 Design and Implementation
3.3 Tools and Technologies
3.4 Testing and Validation oL
4 Results
4.1 Evaluation
4.2 Performance
5 Discussion
5.1 Efficient Test Creation
5.2 Improved Test Robustness
5.3 Optimized System Performance

6 Conclusion

7 Future Work

10
10
10

12
12
12
12

13

14

Chapter 1

Introduction

1.1 Background

Automated testing is critical for ensuring software quality, especially in the realm of
web development, where applications are increasingly complex and dynamic. Traditional
script-based web testing tools like Selenium require users to locate elements on web
pages using XPATH or CSS selectors. This approach presents challenges for technical
and non-technical users alike, as accurately identifying these elements can be complex
and error-prone. Additionally, as [3] highlights, web element locators are often fragile,
meaning minor changes to an application’s code can render tests unusable. This fragility is
especially problematic when locators depend on specific CSS classes or XPATH expressions,
leading to frequent test failures and increased maintenance efforts.

1.2 Importance

The significance of automated testing cannot be overstated, especially in the context of
continuous integration and deployment practices. Organizations depend on automated
testing to deliver high-quality software rapidly while minimizing the risk of bugs and
failures. Automated testing not only saves valuable time and resources as proposed by
[6] but also enhances collaboration between technical and non-technical stakeholders by
providing a common language for test creation and execution.

1.3 Problem

Despite advancements in automated web testing, significant challenges remain. [8] observed
that traditional testing tools often require substantial technical knowledge, making them
inaccessible to non-technical users. Furthermore, the reliance on fragile locators undermines
test reliability, particularly when application updates render locators obsolete. As [3]
notes, "No locator is guaranteed to remain unchanged when the code changes, requiring
time-consuming updates by developers.” These issues highlight the need for a framework
that simplifies web testing, reduces dependency on complex locators, and makes the
process more inclusive for non-technical stakeholders.

1.4 Solution

This paper presents a Domain-Specific Language (DSL) to address these challenges. The
DSL allows users to define tests using a natural, declarative syntax, eliminating the
need for technical knowledge of XPATH or CSS selectors. Instead of specifying how to
locate web elements, users describe the elements, and the system leverages Large Vision-
Language Models (LVLMs), namely SeeClick [4], to infer and locate them accurately.
This approach builds upon prior work, such as the framework proposed by [6], which
sought to automate test generation based on user requirements. By integrating modern
AT techniques, the DSL enhances the accessibility, resilience, and efficiency of web testing.
Moreover, the DSL abstracts over existing tools like Selenium, translating user input into
executable commands compatible with web drivers.

Chapter 2

Literature Review

This paper presents a platform where both technical and non-technical users can create,
execute, and monitor tests, viewing live results as tests run directly within the web
interface. This tool integrates with Continuous Integration (CI) pipelines, making it
suitable for large-scale web applications deployed by enterprises, where automated testing
is critical for maintaining software quality over time. Extensive research has been done in
attempt to improve automated testing. Main ideas tackle topics such as script-based web
testing, Al-based approaches and frameworks that utilize different tools such as LLMs
and data structures.

2.1 Script-Based Testing

Automated web testing has seen significant advances in recent years, with a focus on
improving test generation, abstraction of browser drivers, and simplifying the process for
engineers. Tools such as Selenium, Puppeteer, and Sahi allow users to create automated
tests by interacting directly with browser drivers. However, these traditional tools often
require substantial technical knowledge, as said by [7], who evaluated various automated
testing frameworks and have pointed out that script-based approaches can be tedious,
time-consuming, and difficult to maintain. The study highlights the challenges faced
by script-based methods. This paper proposes a framework that mitigates these issues
by migrating from script-based testing to a more generic method. However, traditional
methods are limited in terms of accessibility: script-based testing remains difficult to
non-technical users. The aim of our solution is to provide a layer of abstraction to web
drivers like Selenium, ensuring a more natural user experience for the testers.

2.2 Curiosity-Driven Web Testing

[8] proposed an innovative solution that incorporates Al to automate the exploration of
web pages during testing. Their proposed framework, WebEzplor, uses curiosity-driven
reinforcement learning (RL) to discover complex test cases more effectively. ”Its goal
is to automatically generate diverse sequences of actions to explore more behaviors of
the web application under testing”, as mentioned by [8]. By allowing an AI model to
explore the web application autonomously, the framework can uncover hidden bugs that
may be missed during traditional testing approaches. This method represents a shift
towards using Al not just for test automation, but also for intelligently exploring web

applications to find potential issues. This paper also utilizes LLMs to directly identify
and interact with web elements, in contrast to relying on Al models solely for guiding the
test automation process.

2.3 Automated Testing Frameworks

The Software Automated Testing (SAT) framework, developed by [6], aims to automate
the process of writing and having to maintain test scripts. It converts well-structured
test case steps into code that can be executed using tools like Selenium. SAT abstracts
away the technical complexity, enabling testers without a programming background to
create and maintain automated test scripts. This framework translates high-level business
requirements into technical specifications, automatically generating the corresponding
HTML locators for the elements being tested. In addition, this significantly reduces the
time and effort required to maintain test scripts, especially in large-scale applications
where frequent updates are made. The proposed approach aims to automate the process
of creating and generating web tests while our solution aims to enhance the robustness of
the tests generated by our framework.

2.4 Structured Web Testing

Another notable advancement in automated web testing is presented by [2], a novel
technique called FormNezus, which focuses specifically on the automated generation of
web form tests. This approach addresses the complexities involved in interpreting the
context of input fields. It achieves this by restructuring the Document Object Model
(DOM) layout of forms into a more organized structure known as the Form Entity
Relation Graph (FERG). This transformation clarifies the semantics and relationships
of form elements, enhancing their suitability for machine interpretation. By analyzing
the characteristics such as textual content and the position of each node within the DOM
hierarchy, FormNexus identifies similarities among various HTML nodes and uncovers
potential relationships. This process offers valuable insights into the semantics of individual
inputs and their interconnections, contributing significantly to the field of automated
testing. The proposed framework uses a different methodology from our solution. However,
the work acheived by [2] demonstrates that web testing technologies can harness the
structure present in web pages to effectively generate tests. Similarly, the solution proposed
in this paper leverages specific web elements such as buttons, images, and inputs to
accurately locate these elements.

Chapter 3

Methodology

3.1 System Architecture

Web Interface < > .NET API < > RNL Compiler

SeeClick

Figure 3.1: Block diagram showcasing the overview of the system

In this section, we explain how the various components of the system interact. The
system is built around the core functionality of a restricted natural language (RNL) that
translates test scripts into Selenium code.

The system begins with the Client Application, which serves as the user’s primary
interface. Users can interact with the application in two modes: a visual editor and a code
editor. These modes allow them to create, edit, and manage test scripts, view a history of
previous runs with detailed statistics (such as execution time and pass/fail status), and

rerun past test scenarios. Once a test script is prepared, the user initiates its execution.

Upon execution, the client establishes a WebSocket Connection with the server,
which facilitates communication between the components. The server first calls the
compiler to translate the restricted natural language (RNL) test script into Selenium
commands. If the compiler encounters errors during this process, it sends detailed error
messages back to the client via the WebSocket connection and terminates the interaction.
In the absence of errors, the server wraps the generated Selenium code in WebSocket
communication for real-time updates and executes the script.

The Restricted Natural Language (RNL) is the core component responsible for
parsing and translating the user-provided test script. The compiler is implemented using
an LL(1) parser, which generates an Abstract Syntax Tree (AST). This AST is then
traversed by a visitor, implemented using the visitor design pattern [5], to translate the
test script into Selenium JavaScript code. Error handling is managed through panic mode
recovery [1], which employs a set of synchronizing tokens to recover from parsing errors
and provide users with detailed error reports rather than halting at the first issue.

Once the RNL test script is translated, Selenium WebDriver automates browser
actions based on the parsed commands. Selenium interacts with web pages to perform
tasks such as clicking buttons, entering text, and verifying results. This ensures that the
test scenarios specified in the RNL are accurately executed in the browser.
usjSignIn {

visit "https://etudiants.usj.edu.lb"

type "123456" on input with description "matricule field"
type "password" on input with description "password field"
type "123456" on input with description "captcha field"

check if button with description "the login button" is displayed
click button with description "the login button"

Listing 3.1: Example test using the restricted natural language

The system integrates with SeeClick, a model designed to gather specific coordinates
based on a natural language description and a Ul image. During test execution, Selenium
captures screenshots at runtime, which are passed to SeeClick along with a description
and type of the desired element. SeeClick [4], a model with over 9 billion parameters,
processes this input to map the positions of web elements with precision, enabling accurate
simulation of user interactions during tests.

Due to the high computational demands of SeeClick, the system utilizes External
Hardware for processing. A high-performance machine equipped with a AMD EPYC
9124 processor (16 shared cores) and an NVIDIA H100 SXM GPU with 80GB of VRAM
was rented. This setup ensures that SeeClick runs efficiently, supporting the system’s
ability to handle large-scale tests and dynamic web environments seamlessly.

3.2 Design and Implementation

The system was designed to be modular, with clear separation between the user interface,
the restricted natural language compiler, Selenium, and SeeClick integration. This modularity
allows the system to be flexible and scalable, making it easier to expand or modify
individual components. The user interface was designed to support both a visual editor
and a code editor, which enables users to interact with the system in the way that best
suits their preferences.

The interaction between the client application and the server is established through a
WebSocket connection, ensuring real-time communication between the components. The
server handles the heavy lifting of compiling and executing test scripts, while the client is
responsible for displaying the results and managing the user’s interaction with the system.

3.3 Tools and Technologies

The following tools and technologies were used in the development of this project:

e Selenium WebDriver: Browser automation tool used to execute the commands
parsed from the restricted natural language.

e SeeClick: An multi-modal model used to locate elements on a website by analyzing
screenshots.

e Python: Used to encapsulate SeeClick within an API written in Flask.
e JWT: Used for authentication and authorization via web tokens.
e .NET: Framework used to implement the server.

e C++ (Compiler): Used to design and implement the restricted natural language
parser, converting user input into executable commands for Selenium.

e Rented High-Performance Machine: Utilized for testing purposes, providing
the necessary computational resources for SeeClick.

o WebSocket Communication: Enables real-time communication between the
client and server during test execution.

e Client Application: Built using React and TypeScript with the shadcn
component library for a user-friendly interface.

e JavaScript (Mocha): Used to execute Selenium code and perform assertions
during tests.

e Docker and Docker Compose: Used to containerize the services for seamless
deployment.

3.4 Testing and Validation

During the validation phase, the system was tested in multiple environments to ensure
correct functionality. A rented machine was used to simulate real-world conditions,
allowing us to run tests at scale and observe how the components interacted.

Several test cases were developed to verify the system’s behavior. These included tasks
such as clicking buttons, filling forms, and navigating between pages. Each test case was
designed to confirm the system’s reliability, with any failures analyzed to determine root
causes.

The system’s performance under load was also validated to ensure stability during
concurrent test executions. The WebSocket connection between the client and server was
rigorously tested to verify that live updates were correctly transmitted, allowing users to
monitor test execution in real time.

(program) = (test) (program) | €

(test) = TEST_NAME { (body) }
(body) = (action) (body) | €
(visit) = VISIT URL
(click) ::= CLICK (elem_type) WITH_ DESC NLD
(check) ::= CHECK_ IF (elem_type) WITH DESC NLD (state)
(type) ::= TYPE CONTENT ON (elem_ type) WITH_DESC NLD
(state) = DISPLAYED | HIDDEN
{(action) = (click)
| (check)
| (type)
| (wisit)
(elem_type) = BUTTON
| LINK
| TEXT
| IMAGE
| INPUT

10/01/2025, 15:24:26

10/01/2025, 15:29:50

10/01/2025, 15:44:33

11349ms. 10/01/2025, 15:45:30

26918ms. 10/01/2025, 15:48:44

(-]
c

7987ms 10/01/2025, 15:61:20
Logs
v usjINCI
link with descri "Marc Ibrahim" should be displayed
link with descri informatique BS in computer science” should be displayed
v usjEtudiantsSignin

button with description "se connecter button" should be displayed

Figure 3.3: Screen with code editor

(X) @ localhost

Home Save Run

Use code editor

usjINCI

Duration 1 Ran A Pa
https://www.usj.edu.lb

1M61ms 10/01/2025, 15:13:13 Passed

institution tab 10270ms 10/01/2025, 16:24:26 Passed

32193ms 10/01/2025, 15:29:50 Passed

Institut national des tele
13545ms. 10/01/2025, 15:39:31 Passed

8512ms 10/01/2025, 15:44:33 Passed
Formations tab.

11349ms. 10/01/2025, 15:45:30 Passed

Licence en informatique
26918ms. 10/01/2025, 15:48:44 Passed

7987ms 10/01/2025, 15:51:20 Passed

Marc brahim is displayed
Logs

Licence en informatique is displayed usjINCI
link with description *Marc Ibrahim" should be displayed

link with description “Licence en informatique BS in computer science" should be displayed

tudiantsSignin
usjEtudiantsSignin

https://etudiant.usj.edu. - "
button with description "se connecter button" should be displayed

Figure 3.4: Screen with Ul-based editor

sd Run Test J

Compiler

‘ .NET API ‘

Selenium Process ‘

Flask API ‘

:

1: Run test

2 : Initiate WebSocket
Connection

4 : Compile test

6 : Create test process

«create»

7 : Load process with code

8 : Initiate WebSocket Connection

9 : Acknowledge

10 : Fetch coordinates

11 : SeeClick

LJ ~12: Send coordinates

13 : Perform
actions on
I elements
14 : Notify user

15 : Forward notification

7

Figure 3.5: Sequence diagram for the run test action

Chapter 4

Results

4.1 Evaluation

The implementation of the restricted natural language compiler and its integration with
Selenium has shown promising results. A variety of test cases were executed, focusing on
the interaction between the Selenium commands and web elements using the SeeClick
model. This functionality has been thoroughly tested across different dynamic web
elements, and the accuracy of detecting and interacting with such elements was found
to be consistently high. The interface reliably clicks on elements that meet the visibility
conditions, even under varying network loads and page render times.

4.2 Performance

In terms of performance, the SeeClick inference pipeline was evaluated for its response
time and efficiency. On average, the time for generating coordinates and executing the
click interaction ranged from 0.5 to 1.5 seconds. This latency is considered an acceptable
overhead given the complexity of ensuring that dynamic and hidden elements are properly
detected before interaction. Considering the robustness of the solution, this performance
tradeoff is deemed a reasonable price to pay for the increased reliability and scalability in
testing web applications.

10

Total time for writing image
Total time for inference: ©
Total time for reading image
Total time for cleanup: 0.00
10.120.121.254 - - [12/Jan,
Total time for
Total time for ON data: 3.33
25 seconds
for to disk: 0.
e for 5649 seconds
Total time for reading image metadata: ©.0003 seconds
1 time for cleanup: 0.0003 secon
10.120.12 3 ordinates HTTP/1.1"
Total time for Authenticat en: 0.0002 seconds
Total time for parsing JSON data: 0.0167 seconds
Total time for 0.0000 seconds
Total time
Total time for
Total time for
254 025 18:00:47] "POST /coordinates HTTP/1.1"
for Authentication token: 0.0002 seconds
for parsing JSON data: 0.0362 seconds
f 0.0000 seconds
for
e for
for
G
254 100 "POST /coordinate
for Authentication tc
e for parsing JSON data:
for decoding: 0.0000 seconds
for writing image to disk: 0.0004 seconds
Total time for inference: ©.5316 seconds
Total time for
f

e for Authentication tc
Total time parsing JSON dat
Total time for decoding: 0.0025 seconds
Total time for writing image to disk: 0.0022 seconds
for inference: 0.5611 seconds
e for metadat 0004 seconds
for ¢ : 0.0004 seconds
.254 Jan 18:01:34] "POST /coordinates HTTP/1.1"
for Authentication token: 0.0003 seconds
SON data: 3.0707 seconds
for decoding: 0.0025 seconds
for writing image to disk: 0.0017 seconds
e for inference: 0.5595 seconds
Total time g tadata: 0.0004 seconds
Total time for cleanup: 0.0004 seconds
10.120.121.254 - - [18:01:39] " /coordinates HTTP/1.1"
AC(myenv) rootC.15893116
[ssh_tmux]@:bash*

200 -

200 -

"root@C.15893116: ~/ap" 18:02 12-Jan-29|

Figure 4.1: Benchmark of the SeeClick coordinate generation pipeline

11

Chapter 5

Discussion

This study demonstrates several important outcomes regarding the development and
usage of the web-based platform for automated web testing.

5.1 Efficient Test Creation

Firstly, the average time required to create a test was significantly reduced due to the
intuitive design of the restricted natural language and the embedded text editor. In
addition, users without technical expertise could efficiently create tests, using the simplified
syntax and drag-and-drop features, without needing knowledge of CSS or XPATH selectors.

5.2 Improved Test Robustness

In terms of success rate, the platform showed a high level of accuracy in identifying
and interacting with web elements. The restricted natural language, in conjunction with
dynamic resolutions powered by LVLMs, ensured that test scripts accurately described
the intended interactions, even in complex scenarios.

5.3 Optimized System Performance

From a performance standpoint, the system demonstrated impressive efficiency. The
execution times were within acceptable ranges, even under various load conditions. The
platform maintained a high throughput and low response time, which is essential for
handling multiple test scenarios concurrently without significant delays.

Overall, the results suggest that the platform provides an effective, friendly, and
reliable solution for automated web testing, offering significant improvements in terms
of speed, accuracy, and performance when compared to traditional testing methods.

12

Chapter 6

Conclusion

In conclusion, this study demonstrates the successful development of a web-based platform
aimed at simplifying automated web testing for both technical and non-technical users. By
introducing a restricted natural language (RNL) for test creation, alongside an intuitive
user interface, the platform allows users to define and execute tests without the need to
understand complex programming concepts like XPATH or CSS selectors.

The system’s design, which integrates modern Large Vision-Language Models (LVLMs)
such as SeeClick, significantly enhances the resilience and flexibility of the testing process
by dynamically locating web elements based on user descriptions. This abstraction over
traditional testing technologies, combined with the use of AI, minimizes the need for
manual updates and reduces the complexity of test maintenance, ensuring that the system
is robust to changes in web application structures.

The performance of the system has been validated through rigorous testing, where it
successfully handled various test scenarios with low execution times and high throughput.
The WebSocket communication allowed for real-time updates, making the testing process
transparent and interactive for users. Additionally, the system’s ability to simulate user
interactions with precision further contributes to its reliability and usability.

Overall, this study provides evidence of the platform’s potential to streamline and
accelerate the web testing process, making it more accessible to a broader audience.
By simplifying test creation, enhancing test resilience, and integrating cutting-edge Al,
this platform represents a significant advancement in the field of automated web testing,
offering substantial benefits to both technical and non-technical stakeholders.

13

Chapter 7
Future Work

The following areas for improvement are identified:

e Scalability and Distributed Execution: Develop a service to handle text execution
for scalability and distribute the execution across multiple machines to speed up the
process. Utilizing cloud infrastructure or distributed systems would be beneficial in
handling large-scale tests.

e Expansion of Selenium Interface: Extend the Selenium interface by adding
additional classes and support for complex interactions, including a dedicated method
for handling the ‘SeeClick’ model.

e Compiler Enhancements: Improve the restricted natural language (RNL) compiler
by adding support for more actions.

14

Bibliography

1]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA, 2006.

Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah. Semantic constraint
inference for web form test generation, 2024.

Maroun Ayli, Youssef Bakouny, Nader Jalloul, and Rima Kilany. Enhancing the
resiliency of automated web tests with natural language. In Proceedings of the 2024 4th
International Conference on Artificial Intelligence, Automation and Algorithms, A12A
24, page 63-69, New York, NY, USA, 2024. Association for Computing Machinery.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing
Zhang, and Zhiyong Wu. SeeClick: Harnessing GUI grounding for advanced visual
GUI agents. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 9313-9332, Bangkok,
Thailand, August 2024. Association for Computational Linguistics.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., USA, 1995.

Milad Hanna, Amal Elsayed Aboutabl, and Mostafa-Sami M Mostafa. Automated
software testing framework for web applications. International Journal of Applied
Engineering Research, 13(11):9758-9767, 2018.

Mohamed Monier and Mahmoud Mohamed El-mahdy. Evaluation of automated
web testing tools. International Journal of Computer Applications Technology and
Research, 4(5):405-408, 2015.

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu.
Automatic web testing using curiosity-driven reinforcement learning. In Proceedings
of the 43rd International Conference on Software Engineering, ICSE '21, pages 423
435. IEEE Press, 2021.

15

	Introduction
	Background
	Importance
	Problem
	Solution

	Literature Review
	Script-Based Testing
	Curiosity-Driven Web Testing
	Automated Testing Frameworks
	Structured Web Testing

	Methodology
	System Architecture
	Design and Implementation
	Tools and Technologies
	Testing and Validation

	Results
	Evaluation
	Performance

	Discussion
	Efficient Test Creation
	Improved Test Robustness
	Optimized System Performance

	Conclusion
	Future Work

